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Abstract. Spectra of the most general Hermitian Hamiltonian which is bilinear in the creation
and annihilation operators of aq-harmonic oscillator are investigated with the help of the
factorization method. It is shown that there are two factorization schemes leading to discrete
spectra of complicated forms. Forq-oscillator models with continuous spectrum the Hamiltonian
may have normalizable eigenstates of infinite multiplicity. Existence of the continuous spectrum
in the interacting system is also discussed.

1. Introduction

The harmonic oscillator is a basic quantum mechanical model whose importance spreads up
to the quantum field theory. Intensive investigations ofq-deformations of many physical
constructions have been pursued during the last decade. These include various attempts
to replace Lie algebras, describing spacetime structures or hidden symmetries, by theirq-
analogues called quantum algebras (or quantum groups). Certain aspects of theq-harmonic
oscillator systems have been studied in [1–15]. An early analysis of the corresponding basic
algebra has been performed in [16, 17].

In particular, in [12, 13] it was shown that the free non-relativistic particle can be
interpreted as aq-harmonic oscillator without discrete spectrum (the limitq → 1 is
degenerate in this case). The behaviour ofq-oscillators interacting linearly with a classical
current was considered in [9, 14]. Such systems have interesting physical features. The
number of bound states built as superpositions ofq-Fock states decreases with the growth
of the absolute value of the current. Once the value of the current exceeds a critical one,
no normalizable states of this type are left [9]. In theq-oscillator models with a continuous
spectrum [5, 6] there exists a second critical value of the current at which new bound states
start to appear [14]. The qualitative property of these bound states is that they have an
infinite multiplicity and that their number grows with the current.

In this present work we investigate aq-oscillator interacting with external currents
through the general Hermitian form bilinear in creation and annihilation operators. This
system is described by the abstract Hamiltonian

H = A+A (1)

where

A = αa + βa+ + γ A+ = α∗a+ + β∗a + γ ∗ (2)
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and the operatorsa+ anda obey theq-harmonic oscillator algebra

aa+ − qa+a = 1 0< q <∞. (3)

The parametersα, β, γ are arbitrary complex numbers. We assume thata+ is a Hermitian
conjugate ofa (this cannot be so ifq is a complex number).

We define the ‘free’q-oscillator Hamiltonian as

L = a+a − 1

1− q . (4)

It satisfies the intertwining relations

La+ = qa+L La = q−1aL. (5)

One can consider (3), (5) as defining relations of an operator algebra generated by three
formal operatorsa, a+, L with some domains of definition in the Hilbert space. However,
in analogy with the standard Heisenberg–Weyl algebra, it is natural to choose (3) as the
only basic relation and consider (4) as a supplementary definition.

The general interacting system (1), (2) displays a rather complicated behaviour encoded
through the interplay of 4 parametersα, β, γ , and q. The explicit form ofH is rather
lengthy:

H = (|α|2+ q|β|2)a+a + (γ ∗α + β∗γ )a + (γ α∗ + βγ ∗)a+ + β∗αa2

+α∗βa+2+ |β|2+ |γ |2. (6)

The main goal of this work is to study the eigenvalue problem for this operator,H |ψ〉 =
λ|ψ〉, and to classify the possible types of its spectra. The basic tool in our analysis is
the factorization method [18], which has already been applied successfully to theα = 0
(or β = 0) system [9, 14]. This paper essentially generalizes the corresponding results in
two principally new points. First, forα 6= 0, β 6= 0 dependence of the discrete spectrum
λn on n takes a very complicated form which was not discussed in the literature before.
Second, the model provides a highly non-trivial example of a system with more than one
factorization of the Hamiltonian which brings in a further intrication of the spectrum. In
general the situation is so complicated that we were actually able to perform only a partial
analysis of the possible types of the energy spectra.

Let us consider the simplest unitary representation of the algebra (3)—theq-analogue
of the Fock space. Suppose there exists a normalizable state annihilated by the operatora

(the vacuum):

a|0〉 = 0 ‖|0〉‖2 ≡ 〈0|0〉 = 1. (7)

(There are models where such a vacuum does not exist [12]—this is one of the principle
differences between the standard andq-deformed harmonic oscillators.) It is not difficult
to see that application of the powers of the operatora+ to |0〉 generates eigenstates of the
HamiltonianL with exponential discrete (point) spectrum:

|n〉 = (a+)n√
[n]q !
|0〉 〈n|m〉 = δnm (8)

[n]q ! = [n]q · [n− 1]q ! [0] q ! = 1 [n]q = 1− qn
1− q

a+|n〉 = √[n+ 1]q |n+ 1〉 a|n〉 = √[n]q |n− 1〉
L|n〉 = − qn

1− q |n〉 n = 0, 1, 2, . . . . (9)
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Eigenvalues ofL for theq-Fock states|n〉 are positive forq > 1 and negative for 0< q < 1.
For 0 < q < 1 the q-oscillator algebra (3) admits unitary representations for which

eigenvalues ofL are positive

L|λ〉 = λ|λ〉 λ > 0. (10)

In contrast to theq-Fock states (8), in this case it isa+ that plays the role of lowering
operator (instead of the operatora):

a+|λ〉
√
qλ+ 1

1− q |qλ〉 a|λ〉 =
√
λ+ 1

1− q |q
−1λ〉. (11)

In distinction from (9), energies of the sequence of states generated by the action of powers
of a+ or a upon given|λ0〉, whereλ0 > 0 is a free parameter, form a geometric progression

λn = λ0q
n n = 0,±1,±2, . . . (12)

which is infinite in both directions, i.e. there is an accumulation pointλ = 0. The discrete
spectrum ofL may formally have an arbitrary number of such geometric progressions. The
latter are known to be related to the bilateralq-hypergeometric series through the specific
coherent states representation [12, 13].

It is possible that the abstract states (10) form a continuous spectrum [6, 12]. In this
case they should be normalized as follows:

〈λ1|λ2〉 = λ1δ(λ1− λ2). (13)

One can remove the unusualλ1 factor in front of the delta-function in this relation by
redefinition of the states|λ〉. In this case it is necessary to change the definitions (11)
appropriately. Here we assume that the states|λ〉 are not degenerate which is not always
the case. The continuous spectrum may appear in the infinite-gap geometric series form
[13], but for the free non-relativistic particle model which we use below, it occupies the
whole half-axisλ > 0. Note that the states withλ = 0 form a special representation of the
relations (3), (5), e.g. there are cases whena+, a degenerate intoc-numbers [6, 9].

In this paper, we analyse the eigenstates ofH (6) formed by theq-Fock irreducible
representation of theq-oscillator algebra (8). We also give a partial description of the
spectra ofH appearing from an infinite direct sum of the representations (11) determining
the continuous spectrum ofL. The cases when the states (11) belong to the point spectrum
of L and the consequences for the spectra ofH are not considered.

2. The factorization chain and formal discrete spectra

According to the standard factorization scheme [18], we should find a sequence of operators
A+` , A` and constantsλ` which define a chain of Hamiltonians

H` = A+` A` + λ` ` ∈ Z (14)

such thatH ≡ H0 and the neighbouring Hamiltonians, sayH` andH`+1, are connected to
each other via the permutation of the operator factors in (14)

H`+1 = A+`+1A`+1+ λ`+1 = A`A+` + λ`. (15)

This chain of operator equations, called the factorization chain, guarantees the relations

H`A
+
` = A+` H`+1 A`H` = H`+1A`
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which connect spectral properties of the HamiltoniansH`. Under certain conditions the
numbersλ` generate the discrete spectrum ofH0. In these cases it is usually assumed that
the zero modes ofA`,

A`|0〉int
` = 0 (16)

provide the ground states ofH` with the eigenvaluesλ`

H`|0〉int
` = λ`|0〉int

` .

If λ` < λ`+1, then the`th eigenstate ofH0 is obtained by the action of a sequence of
operatorsA+k upon |0〉int

` :

|`〉int
0 = A+0 . . . A+`−1|0〉int

`

‖|`〉int
0 ||2 = (λ` − λ0) . . . (λ` − λ`−1)‖|0〉int

` ‖2.
(17)

From the latter relation it is seen that if|0〉int
` is normalizable (i.e. if it belongs to the abstract

Hilbert space) and

0< (λ` − λ0) . . . (λ` − λ`−1) <∞ (18)

then|`〉int
0 is normalizable as well. For some particular`, the states|`〉int

0 can be normalizable
even if the inequalityλk > λk−1 is violated for some neighbouringλk ’s. In this case there
are wave functions|k〉int

0 that do not belong to the Hilbert space and a more careful analysis
is required to determine which of theλ` represent actual spectral points.

Since the factorization method is formulated in the abstract operator form, it is applicable
to any eigenvalue problem. For the standard Schrödinger equation with analytical potentials,
H` are differential operators of the second order. In this case there exist differential operators
of the first orderA`, such that the factorization chain (15) is satisfied. However, general
existence statements are not constructive and our main interest lies in the opposite—in a
search of some new solvable spectral problems via solutions of (15). Unfortunately, one
often finds in this way only a part of the discrete spectrum.

Let us introduce the following sequence of operatorsA+` , A`:

A` = α`a + β`a+ + γ` A+` = α∗` a+ + β∗` a + γ ∗` . (19)

Here the integer index̀ takes values from zero up to some numberN determined by the
normalizability condition on the zero modes of the operatorsA`. All HamiltoniansH` have
evidently the form (6).

Proposition 1.The operators (19) provide a solution of the factorization chain (15) for a
particular choice of the parametersα`, β`, γ`. This gives the formal discrete spectrumλ`
of the Hamiltonian (6)

λ` = (α0q
`/2+ β0q

−`/2)2

q − 1
− (α0+ β0)

2(Reγ0)
2

(α0q`/2+ β0q−`/2)2

− (α0− β0)
2(Im γ0)

2

(α0q`/2− β0q−`/2)2
+ |γ0|2+ λ0− (α0+ β0)

2

q − 1
(20)

where` = 0, 1, . . . , N andα0, β0, γ0, λ0 are parameters related toα, β, γ and subject to
the constraintβ0/α0 6= ±qk for some integerk > 0.
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Proof. Substituting (19) into (15) and using (3) we find the following system of equations
for α`, β`, γ`, andλ`:

|α`+1|2+ q|β`+1|2 = q|α`|2+ |β`|2
α`β

∗
` = α`+1β

∗
`+1

γ`α
∗
` + γ ∗` β` = γ`+1α

∗
`+1+ γ ∗`+1β`+1

λ` + |α`|2+ |γ`|2 = λ`+1+ |β`+1|2+ |γ`+1|2.

(21)

The gauge transformationsa → aeiθ and A → Aeiϕ allow us to takeα and β as
real numbers in the Hamiltonian (1) without loss of generality. It then follows from the
above equations that we may also takeα` andβ` a real. This choice leads to the following
non-trivial solution of (21):

α` = α0q
`/2 β` = β0q

−`/2

γ` = (α0+ β0)Reγ0

α` + β` + i(α0− β0)Im γ0

α` − β`
(22)

with the rather involved formula for the discrete spectrum (20). Actually, one can
simultaneously change the signs ofα`, β`, γ` for each`, but such a freedom is obvious
and may be discarded. Note that if one hasβ0/α0 = ±qk, k a positive integer or zero, then,
unless Reγ0 = 0 or Imγ0 = 0, the eigenvalues (20) diverge for` = k. In these situations
the factorization method cannot be applied directly through the ansatz (19).

There are two possible identifications ofH0 as given in (14) withH as specified in (1).
The first one is obvious:

α0 = α β0 = β γ0 = γ λ0 = 0. (23)

This corresponds to the following sequence of parameters

α` = αq`/2 β` = βq−`/2

γ` = (α + β)Reγ

αq`/2+ βq−`/2 +
i(α − β)Im γ

αq`/2− βq−`/2 .

Another identification corresponds to the choiceλ0 6= 0:

α0 = βq1/2 β0 = αq−1/2

γ0 = (α + β)Reγ

αq−1/2+ βq1/2
− i(α − β)Im γ

αq−1/2− βq1/2

λ0 =
(
β2− α

2

q

)(
1+ (Reγ )2(q − 1)

(αq−1/2+ βq1/2)2
+ (Im γ )2(q − 1)

(αq−1/2− βq1/2)2

)
.

(24)

These initial conditions yield:

α` = βq(`+1)/2 β` = αq−(`+1)/2

γ` = (α + β)Reγ

αq−(`+1)/2+ βq(`+1)/2
+ i(α − β)Im γ

βq(`+1)/2− αq−(`+1)/2

λ` = (βq(`+1)/2+ αq−(`+1)/2)2

q − 1
− (α + β)2(Reγ )2

(βq(`+1)/2+ αq−(`+1)/2)2

− (α − β)2(Im γ )2

(βq(`+1)/2− αq−(`+1)/2)2
+ |γ |2+ (α + β)

2

1− q .

There are thus two types of factorization schemes, or two possible branches of the discrete
spectrumλ`. �
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The structure of the Hamiltonian (6) is seen clearly in the following renormalized
expression

Lint = 1

α2
0 + qβ2

0

(
H0− λ0− |γ0|2− α

2
0 + β2

0

1− q
)

= a+a + ja+ + j ∗a + J (a+2+ a2)− 1

1− q (25)

where

j = γ0α0+ β0γ
∗
0

α2
0 + qβ2

0

J = α0β0

α2
0 + qβ2

0

.

The energy scale was chosen in such way that atj = J = 0 one gets the ‘free’ system (4).
For arbitrary values ofα0 andβ0 the currentJ varies in the range

06 |J | 6 1

2
√
q
. (26)

For |J | > 1
2

√
q the Hamiltonian (25) cannot be factorized, which indicates an instability

of the system in this region. Let us introduce the parametrizationq ≡ e2ω. The formal
discrete spectrum of the operator (25) can then be written as follows:

E` = 2J

q − 1
cosh 2ω(`+ σ)− 1

4J

(
(Rej)2

cosh2ω(`+ σ) +
(Im j)2

sinh2ω(`+ σ)

)
(27)

for J > 0, and

E` = 2|J |
q − 1

cosh 2ω(`+ σ)− 1

4|J |
(

(Rej)2

sinh2ω(`+ σ) +
(Im j)2

cosh2ω(`+ σ)

)
(28)

for J < 0. The parameterσ ,

σ = 1

2ω
ln
|α0|
|β0| (29)

depends on the ratioα0/β0 and is not uniquely determined from a fixedJ . (This is why
there are two branches in the spectrum, or two factorization schemes). We parametrize the
first scheme by the choice

σ = σ1 = 1

2ω
ln

1+
√

1− 4J 2q

2|J | (30)

and the second one by

σ = σ2 = 1

2ω
ln

1−
√

1− 4J 2q

2|J | = 1− σ1. (31)

Note that whenJ varies between 0 and12
√
q and q > 1 the parameterσ1 changes

from ∞ to 1
2 and σ2 changes from−∞ to 1

2. In the latter case one passes the values
σ = −k, k = 0, 1, 2, . . . at which the formal spectrum (27) (resp. (28)) explodes unless
Im j = 0 (resp. Rej = 0) as was mentioned already. Forq < 1 the ranges ofσ1 andσ2

interchange.
We are now ready to analyse the spectral properties of our system at different values of

the parameters.
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3. Discrete spectrum forq > 1

Let us first analyse the situation whenq > 1 (or ω > 0). In this case all the operators
coming into play are unbounded. Our system has an infinite unbounded discrete spectrum
independently on the parametersα, β, andγ .

Indeed, consider the zero modes of the operatorsA` (16) which are formal eigenstates
of the Hamiltonian (1) with eigenvaluesλ`. The normalizability of these states can be
determined with the help of the expansion

|0〉int
` =

∞∑
n=0

Bn(`)|n〉, (32)

where|n〉 are theq-Fock states of the non-interactingq-oscillator HamiltonianL obtained
from (25) by settingj = J = 0. Substituting (32) into (16) and suppressing the dependence
of Bn on `, one arrives at the recursion relation

α`
√

[n+ 1]qBn+1+ β`
√

[n]qBn−1+ γ`Bn = 0 n = 1, 2, . . . (33)

with the initial conditionB1 = −γ`B0/α`. Assumingα`β` > 0, one may write

Bn =
(
β`

α`

)n/2
Pn(z`)√

(−1)n(q; q)n
z` = −γ`

√
q − 1

α`β`

where the standard notation forq-shifted factorial [19] is used:

(a; q)0 = 1 (a; q)n = (1− a)(1− aq) . . . (1− aqn−1).

Substituting this Ansatz into (33), one sees [20] thatPn(z`) coincide with the monic
continuousq-Hermite polynomials forq > 1 satisfying the three-term recurrence relation

Pn+1(z)+ (qn − 1)Pn−1(z) = zPn(z).
Note that in our case the argument of the polynomialsz` is complex. Forα`β` < 0 one
derives similar formulae after the transformationPn(z)→ inPn(z/i).

In order for the ground state|0〉int
` to be stable it is necessary for the condition

‖|0〉int
` ||2 =

∞∑
n=0

|Bn|2 <∞ (34)

to be satisfied. In other words it is necessary thatBn → 0 for n → ∞ sufficiently fast.
Writing asymptotic form of (33) asn→∞

α`q
1/2Bn+1+ β`Bn−1 = 0 q > 1

we see that

|Bn+1|
|Bn−1| →

|β`|
|α`|q1/2

.

Therefore the condition of normalizability of the states|0〉int
` is equivalent to the following

constraint:

|β0/α0| < q`+1/2.

According to (29) this means that one should have

σ(J ) > −`− 1
2. (35)
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Proposition 2.EigenvaluesE` determined by the first factorization scheme, i.e. appearing
from (27), (28) for` = 0, 1, . . . ,∞ after the substitutionσ = σ1, belong to the point
spectrum of the HamiltonianLint, i.e. the corresponding eigenstates (32) lie in the abstract
Hilbert space.

This statement follows from the fact thatσ1(J ) > 0 for all the allowed values ofJ ,
which evidently satisfies the condition (35). Note that in the limitJ → 0 this scheme gives
the discrete spectrum of theJ = 0 model [9, 14]:

E` = q`

q − 1
− |j |2q−` ` = 0, 1, . . . ,∞.

Consideration of the second factorization scheme is more complicated. For a fixedJ

one finds that the states|0〉int
` are normalizable for values of̀ that start at̀ = k, where

k is the minimal integer such thatk > − 1
2 − σ2. In order forλ`, ` > k, to belong to the

spectrum ofH0 the positivity condition (18) must be satisfied. For` > 2k + 1 it is always
fulfilled. In the regionk 6 ` < 2k + 1 the positivity takes place only for odd or even`
depending on the value ofσ2. Thus the spectrum is complicated forσ2 < − 1

2: it contains
all λ` for ` > 2k and a sieved part ofλ` for k 6 ` 6 2k. Take for example,k = 1. Then,
the state|1〉int

0 is not normalizable sinceλ1 − λ0 < 0; but the state|2〉int
0 belongs to the

spectrum when−1< σ2 < − 1
2 because then(λ2 − λ0)(λ2 − λ1) > 0. For− 3

2 < σ2 < −1,
the positivity condition is violated, i.e.|2〉int

0 is not physical. A similar situation takes place
for k > 1. Note, however, that in order to pass from one region where such a behaviour is
observed to another it is necessary to cross the singular pointsσ2 = −k where one of the
parametersλ` entering the factorization chain diverges. The latter singularities are present
for Im j 6= 0 (J > 0) or Rej 6= 0 (J < 0) which indicates some instability. At the critical
pointsJ = qk/(1+ q2k+1) (whenσ2 = −k) and for generic complex currentj , the discrete
spectrum is determined only from the first factorization scheme.

Note that the lowest bound state energyλ0 in (24) is negative,λ0 < 0, when
q−3/2 < |β/α| < q−1/2, which is in contradiction with the formal condition of positivity of
the Hamiltonian (1). This contradiction is resolved by the observation that for|β/α| < q−1/2

the zero mode ofA0 in the second factorization scheme does not belong to the domain of
definition of the unbounded operatorA0 of the first factorization scheme. If|β/α| > q−1/2,
i.e. if λ0 > 0, then the application ofA0 of the first factorization scheme to the ground state
of the second scheme gives a normalizable state.

As an illustration, let us consider the coherent states representation of theq-harmonic
oscillator algebra [17]

a = z−1 1−D
1− q a+ = z Df (z) = f (qz). (36)

It yields the following second orderq-difference equation as the eigenvalue problem for the
operatorLint:

Jq−1

(1− q)2ψ(q
2z)− 1

1− q
(
z2+ zj ∗ + J (1+ q

−1)

1− q
)
ψ(qz)

+
(
jz3+ j ∗z

1− q + J
(
z4+ 1

(1− q)2
)
− λz2

)
ψ(z) = 0. (37)

In this case investigation of the discrete spectrum eigenfunctions appears to be not very
difficult.
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Proposition 3.Orthonormal eigenfunctionsψ(n)(z) of the operatorH (6) corresponding to
the eigenvaluesλn (20) have the explicit form

ψ(n)(z) = CnPn(z)
∞∏
k=1

(
1+ (1− q)γnz

αnqk
+ (1− q)βnz

2

αnq2k

)
(38)

wherePn(z) is a nth order polynomial ofz

Pn(z) =
n−1∏
i=0

[
γ ∗i
βi
− γn

αn
+
(
αi

βi
− βn
αn

)
z

]
(39)

andCn are the normalization constants

Cn = C0

n−1∏
i=0

βi(λn − λi)−1/2 n > 0.

This statement follows from the fact that the infinite product standing on the right hand
side of (38) determines the unique zero mode of the operatorAn. Using the relation (17)
and performing simple calculations we arrive at the above formulae.

4. Discrete spectrum forq < 1

Now consider the situation when 0< q < 1 (or ω < 0). We start by determining
the normalizability conditions of the Hamiltonian eigenstates|0〉int

` (16) using again the
expansion (32). Substituting the ansatz (withα`β` > 0 understood)

Bn(`) =
(
β`

α`

)n/2
Pn(z`)√
(q; q)n

z` = −γ`
√

1− q
α`β`

into (33), one arrives at the three-term recurrence relation for the continuousq-Hermite
polynomials [20]:

Pn+1(z`)+ (1− qn)Pn−1(z`) = z`Pn(z`).
For n→∞, equation (33) simplifies to

α`Bn+1+ β`Bn−1+ γ`
√

1− qBn = 0. (40)

Its general solution is

Bn = c1ζ
n
1 + c2ζ

n
2 ζ1,2 =

−γ`
√

1− q ±
√
(1− q)γ 2

` − 4α`β`

2α`
.

Consequently, the state|0〉int
` shall be normalizable only if|ζ1| < 1 or |ζ2| < 1, and,

additionally, if the solution of (33) satisfying the initial conditionB1 = −γ`B0/α` is
asymptotically proportional toζ n1 or ζ n2 respectively asn→∞.

Analysis of the general situation is thus quite complicated. Let us discuss briefly spectra
of the Hamiltonian (25) with

j = 0 or γ` = 0.

From the asymptotic equationα`Bn+1+β`Bn−1 = 0 we see that the normalizability conditon
is equivalent to the constraint

|β`/α`| < 1 or |β0/α0| < q`. (41)
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This is equivalent to the requirementσ < −`. As a result we see that only the first
factorization scheme generates the discrete spectrum provided the condition

|J | < q`

1+ q2`+1

is satisfied. Since for sufficiently largèthis inequality is violated, the number of bound
states is finite and equals to the integral part of 1− σ1.

As was mentioned, a simple form of our ‘Schrödinger equation’ is obtained in the
coherent states representation (36). Repeating the considerations performed forq > 1
in the section 3, we arrive at the following representation of formal eigenstates of the
HamiltonianH with eigenvaluesλn:

ψ(n)(z) = CnPn(z)
∞∏
k=0

(
1+ (1− q)γnz

αn
qk + (1− q)βnz

2

αn
q2k

)−1

wherePn(z) is the polynomial fixed in (39) andCn are the normalization constants.
It could be thought that the problem of qualitative characterization of the spectrum

classes of our system is completed, but, in fact, only a part of it has been treated. New
qualitative features appear in the situation whenq < 1 and the ‘free’q-oscillator has both
infinite discrete and continuous spectra with positive energies [5, 6, 13].

The continuous spectrum may occupy some parts of the half-axis 0< λ < ∞. If it
does not cover this region completely, then it appears in the form of infinitely many bands
that accumulate near theλ = 0 point from above. Below we assume that the continuous
spectrum fills [0,∞) and use for illustration a particular model of theq-oscillator where
one has only the continuous spectrum. Such a model is built upon the free non-relativistic
particle with the following generators of theq-harmonic oscillator algebra [12]:

L = − d2

dx2
= a+a − 1

1− q
a = T −1

(
d

dx
+ 1√

1− q
)

a+ =
(
− d

dx
+ 1√

1− q
)
T

(42)

whereT is the unitary dilation operatorT ψ(x) = q1/4ψ(q1/2x). In this model the vacuum
|0〉 and q-Fock states (9) do not exist, because the zero mode of the operatora is not
normalizable on the whole line.

The eigenvalue problemLintψ = λψ for the Hamiltonian (25) in the realization (42) is
given by the linear mixed differential-q-difference equation (the primes denote derivatives
with respect to the arguments of the functions):

−ψ ′′(x)+ j ∗q−1/4ψ ′(q−1/2x)− jq3/4ψ ′(q1/2x)

+ 1√
1− q (jq

1/4ψ(q1/2x)+ j ∗q−1/4ψ(q−1/2x))

+Jq1/2

(
q3/2ψ ′′(qx)− q + q

1/2

√
1− q ψ

′(qx)+ 1

1− q ψ(qx)
)

+Jq−1/2

(
q−1/2ψ ′′(q−1x)+ 1+ q−1/2

√
1− q ψ ′(q−1x)+ 1

1− q ψ(q
−1x)

)
= λψ(x). (43)

This expression looks quite cumbersome. However, some properties of the spectrum can
be unravelled owing to the hidden symmetry. Similar types of equations were considered
in [21] from a different point of view.
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Following [12], we may substitute into (43) the Fourier transformation

ψ(x) =
∫ ∞
−∞

φ(p)eipxdp

which is well defined for functions fromL2(R), and arrive at the equation:

j ∗q1/4

(
ipq1/2+ 1√

1− q
)
φ(q1/2p)+ jq−1/4

(
−ip + 1√

1− q
)
φ(q−1/2p)

+(p2− λ)φ(p)+ Jq1/2

(
−q3/2p2+ q + q

1/2

√
1− q ip + 1

1− q
)
φ(qp)

+Jq−1/2

(
−q−1/2p2− 1+ q−1/2

√
1− q ip + 1

1− q
)
φ(q−1p) = 0. (44)

This is aq-difference equation of the fourth order which is not easy to analyse for arbitrary
values of parameters.

Let us look for eigenstates of the abstract HamiltonianLint in the form of the integral
expansion over the continuous spectrum states of the free system|λ〉:

|ψ〉int =
∫ ∞

0
B(λ)|λ〉 dλ. (45)

These states are normalizable when∫ ∞
0
λ|B(λ)|2 dλ <∞. (46)

Consider zero modes of the operatorsA`. For the free non-relativistic particle model of
the q-oscillator they are determined by the generalized pantograph equation (cf [22, 23]):

α`q
−1/4

(
ψ ′(q−1/2x)+ 1√

1− q ψ(q
−1/2x)

)
+β`q1/4

(
−q1/2ψ ′(q1/2x)+ 1√

1− q ψ(q
1/2x)

)
= −γ`ψ(x). (47)

We setγ` = 0 and assume that these zero modes can be represented in the form (45).
Substituting (45) into (16) we come to the following equation forB(λ)

α`q

√
λq + 1

1− q B(qλ)+
β`

q

√
λ+ 1

1− q B(q
−1λ) = 0. (48)

Solutions of (48) are defined up to the multiplication by an arbitrary functiong(λ) periodic
in the logarithmic scale,g(q2λ) = g(λ). Fourier expanding this function in the variable
ln λ, we find that there is a countable infinity of states|0〉int

` :

|0; s〉int
` = C

∫ ∞
0
λρs

√
((q − 1)q2λ; q2)∞
((q − 1)qλ; q2)∞

|λ〉 dλ (49)

where the notation(a; q)∞ =
∏∞
k=0(1− aqk) is used, and

ρs = π i(2s + 1)+ ln(β`/α`q2)

ln q2
s = 0,±1,±2, . . .

|C|−2 =
∫ ∞

0
λτ−1 ((q − 1)q2λ; q2)∞

((q − 1)qλ; q2)∞
dλ τ = ln |β`/α`|

ln q
.

(50)
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Using the Ramanujanq-beta integral [19], we can find the explicit form of the normalization
constant

|C|−2 = 0(τ)0(1− τ)(q; q2)∞(q2−2τ ; q2)∞
qτ (1− q)τ (q2; q2)∞(q1−2τ ; q2)∞

where0(τ) is the standard0-function. The integral (50) converges nearλ = 0 if

|β`/α`| < 1. (51)

Integrability near theλ = ∞ point is guaranteed if

|β`/α`| > √q. (52)

We thus come to the following statement.

Proposition 4.The states|0; s〉int
` (49) belong to the Hilbert space in the domain

q`+1/2 < |β0/α0| < q` or − `− 1
2 < σ < −`.

There is thus only one normalizable eigenstate of the HamiltonianH (for γ = 0) of infinite
multiplicity |`; s〉int

0 coming from the first factorization scheme. The second scheme does
not yield bound states.

Using the connection betweenσ1 andJ we see that if

q`+1/2

1+ q2`+2
< |J | < q`

1+ q2`+1

for some integer̀ > 0, thenLint has a bound state of infinite multiplicity.
Unusual types of spectra appear due to the exotic operator algebras and equations that are

involved in the definition of our spectral problems. For example, the differential-difference
equations associated with the free non-relativistic particle realization of theq-oscillator
algebra admit an infinite number of linearly independent normalizable solutions. Such a
situation is reached because one sacrifices the analyticity of the corresponding functions at
the x = 0 point.

5. Comments on the continuous spectrum

The spectrum of the Hamiltonian (1) forγ = 0 and 0< q < 1 contains a finite number
of discrete points for any nonzeroα andβ. If the ‘free’ q-oscillator admitsq-Fock states
then a finite number of superpositions of these states form discrete energy levels of the
interacting system and the ‘rest’ of superpositions form a band of the continuous energy
states [14]. This band exists independently on the presence of the continuous part in the
spectrum of the ‘free’q-oscillator. Let us consider briefly its structure in the present model.
Suppose that there are non-degenerate continuous spectrum states|E〉

Lint|E〉 = E|E〉 〈E1|E2〉 = δ(E1− E2) (53)

such that

|E〉 =
∞∑
n=0

Bn|n〉 (54)

where|n〉 are theq-Fock states (9).
Substituting (54) into (53) and taking the Hamiltonian in the form (25) withj = 0, one

comes to the following recurrence relation(
qn

q − 1
− E

)
Bn + J

(√
[n− 1]q [n]qBn−2+

√
[n+ 1]q [n+ 2]qBn+2

)
= 0 (55)
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wheren = 0, 1, 2, . . . . The initial conditionsB−2 = B−1 = 0 are imposed in (55) and the
coefficientsB0 andB1 are kept free. In the limitn→∞ equation (55) is reduced to

Bn−2− E(1− q)
J

Bn + Bn+2 = 0. (56)

The general solution of this equation has the formBn = c1ζ
n
1 + c2ζ

n
2 + c3ζ

n
3 + c4ζ

n
4 , where

ζi stand for the roots of the characteristic equation

ζ 4− E(1− q)
J

ζ 2+ 1= 0. (57)

Solving (57) we obtain

ζ 2 = E(1− q)
2J

±
√(

E(1− q)
2J

)2

− 1. (58)

The coefficientsBn are bounded when all roots (58) lie on the unit circle,|ζi | = 1, i.e.
when

|E| < 2|J |
1− q . (59)

If this is the case, the initial conditions can be satisfied by particular combinations of the
linearly independent solutions. Thus, our heuristic considerations suggest that there is a
band of continuous spectrum in the energy range (59).

In conclusion, let us mention that the interacting system has a continuous spectrum
formed by the ‘free’q-oscillator continuous spectrum states (in the realizations where the
latter exist). There are, however, some difficulties with the precise characterization of this
type of spectrum [14], and we do not consider it in the present work. In this and several
other aspects our results are not complete. However, they give some basis for further
improvements and more rigorous considerations in the future.
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